Teaching Plan

Title	Free	entry and exit
Instructional	\checkmark	To illustrate how free entry and exit lead to equal profits across markets
Objectives		in the long run.
Keywords and		Long run
Concepts	\triangleright	Free entry and exit
Illustrated		
Needed Time	\checkmark	A double-lesson period, 80 minutes in total

Sessions		Details	Time Spent
Activity/	1.	T: If you were a farmer, and you could grow anything in	10 mins
Announcement		your farm, what would you like to grow for sale? (Ask	
		some students to answer.) Of course, you will choose a crop	
		which can give you the highest profit. Then what factors	
		determine your profit from growing and selling a crop?	
		After the game you are going to play, you will know what	
		factors determine your production profit in a market.	
	2.	T: Now, each of you is a farmer in this economy, and each	
		year you must decide what to plant. You have four choices	
		of crop you can grow for sale. They are corn, wheat, rice	
		and soybeans. Each crop has different production cost. The	
		production cost is eight dollars per unit of corn; nine dollars	
		per unit of wheat; ten dollars per unit of rice and eleven	
		dollars per unit of soybean.	
	3.	Teacher writes down the four demand functions of the	
		crops on board. The functions can be found in Table 1. The	
		set of market demand functions to be used depends on the	
		total number of students in the lesson. After all students	
		have arrived, but before the experiment begins, it is	
		necessary to count the no. of students to choose the set of	
		demand functions of the four crops. Each inverse demand	
		function is assumed to be linear with slope equal to	
		negative one. The intercepts are chosen so that each one is	
		greater than or equal to the unit production cost in each	
		market, and the sum of the differences between the	
		intercepts and their respective unit production costs equals	
		the number of participants. This ensures that in long-run	
		equilibrium there are zero profits in each market.	

4.	T: Here are the market demands of the four crops on board.	
	(Stick a large and highly visible sign in each corner of the	
	classroom with the crop name and its production cost, e.g.,	
	'Corn' 'unit production cost: 8'.) T: The four corners of the	
	classroom are the four markets. Please make your choice by	
	physically going to the market of the crop you wish to plant	
	later. The amount of the crop you supply is always one unit.	
	So, the quantity supplied of each crop equals to the no. of	
	farmers in that market. I will give you thirty seconds to	
	do so. Let's see who can earn the highest profit.	
5.	When students are firstly asked to select a market, there	10 mins
	may be some confusion, because they have no grounds on	
	which to base their initial crop selection. If need be, teacher	
	can instruct students to pick a market at random. After	
	everyone has selected a market, teacher can announce price	
	and profit for each market based on the demand functions	
	students are facing. Record these numbers on the market	
	charts shown in Table 2.	
6.	T: After knowing the price of the crop you planted and sold,	
	you can now calculate your own profit which is equal to the	
	price minus the unit production cost in the market you	
	selected. I am now distributing a Farmer Profit Chart	
	(shown in Table 3) to each of you. Please record your own	
	outcome on this chart after each round.	
7.	After students have recorded their individual profits from	30 mins
	round 1, repeat the whole process described above by	
	asking students to select a crop to produce in round 2. It is	
	important to give students enough time to count the farmers	
	in the different markets and analyze the market charts so	
	they can make informed market selections. Continue the	
	rounds until the unit profit recorded in Market Chart for	
	four markets are all zero. The process will be repeated up to	
	eight times.	
8.	Discussion:	30 mins
	8.1. How did you make your decision on the selection of	
	crop you want to grow and sell initially?	
	8.2. After several rounds of the game, how did you make	
	the decision? What factors did you consider? What	

	factors did affect your profits? (Besides production	
	cost, the number of farmers in a market is the main	
	factor affecting the unit price and thus the profit of a	
	farmer.)	
	8.3. In the first rounds of the game, how many people got	
	positive profits? How many got negative profits?	
	(Teacher can just ask them to put up their hands and get	
	the general idea. Do the same thing for the second, the	
	third, the second last and the last round. Students	
	should see the declining number of farmers who got	
	either positive or negative profit.) Why did your profits	
	move towards zero as you continued to make your	
	production decision? (Introduce the concept of long-run	
	equilibrium with zero profits in markets to students.)	
	What are the basic conditions to have such long-run	
	equilibrium? (The main condition is the existence of	
	free entry and exit. A positive profit is a signal for the	
	entry of firms; a negative profit is a signal for the exit	
	of firms. Therefore, in equilibrium, all firms should	
	earn no profit. Teacher should tell students that the free	
	entry and exit is one of the characteristics of perfect	
	competition markets. Hence, in the long-run	
	equilibrium, every perfect competition firm also earns	
	zero profit.	
Tools	Print out enough Table 3 for students	
Definitions	► Long run – a situation where a producer is able to vary all	
	the factors of production. (Lam, 1996)	
	\succ Free entry and exit – a condition that firms can enter and	
	leave the market freely without any restrictions. (Lam,	
	1996)	
Past	> Author of the game found that students typically converge	
Experience	to long-run equilibrium with zero profits in each market in	
	five or six rounds. It can take longer if there are more than	
	40 students.	
	\succ It is sometimes the case that some students will sit in the	
	same market for the entire experiment. Such students may	
	be disinterested or confused. The point is that such	
	behavior does not affect the outcome of the experiment as	

		long as it is not pervasive.	
	\triangleright	Students observe that it only takes a few profit seekers to	
		equalize profits across markets. This is an interesting point	
		that the experiment allows students to discover on their	
		own.	
References		Experiment:	
		> Garratt, Rodd, summer 2000, A Free Entry and Exit	
		Experiment, Journal of Economic Education, vol 31 (3),	
		pp 237-243.	
	\triangleright	Definition:	
		▶ Lam, P. L., 1996, Advanced Level Microeconomics:	
		Illustrations Macmillan Publishers (HK) Ltd	

Appendix Materials for Teacher

- Table 1Demand Functions of Four Crop Markets
- Table 2Market Chart
- Table 3Farmer Profit Chart